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Statistical mechanics of non-intersecting line systems? 

Franz Rys and W Helfrich 
Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 3, 1000 Berlin 33, 
West Germany 
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Abstract. Statistical assemblies of non-intersecting closed lines (loops) with a variable loop 
multiplicity are considered which may have relevance for defect models of certain phase 
transitions. A loop gas model on a lattice is formulated and shown to be formally equivalent 
to an m-anisotropc n-vector model in the limit n = 0. In two dimensions, the equivalence 
with the eight-vertex model in a field is discussed. In a few special cases the novel model is 
equivalent to known ones. 

1. Introduction 

Assemblies of lines play an important role in various physical problems. As an example, 
a system of linear polymers in solution is represented by non-intersecting, polar (i.e. 
oriented) or non-polar, open or closed lines. The statistical description is quite 
non-trivial due to the non-Markovian character of the excluded-volume effect even in 
the absence of any further interaction. The one-chain problem was formulated some 
time ago (Flory 1953, Edwards 1965). de Gennes (1972) showed its equivalence with 
the field theory of the n-vector model in the limit n = 0, and des Cloizeaux (1975) 
generalised it to treat polymers at finite densities. A particularly elegant formulation of 
the n = 0 formalism was given by Sarma (1975) which will be used in a modified version 
to describe our problem. Up to date, the single chain, dilute and semi-dilute solutions, 
as well as polydisperse systems can be described satisfactorily (Burch and Moore 1976, 
Witten and Schafer 1978, de Gennes 1980, Rys 1980). 

Another example is the description of certain 'melting transitions' in three dimen- 
sions involving liquid crystalline states; especially, the smectic A to nematic (AN) 
transition was considered by one of us (Helfrich 1978, 1980). In these cases closed 
dislocation lines which do not intersect and are polar, i.e. have multiplicity two, are 
thought to break up a periodicity. Assemblies of thermally generated loops were 
considered and the phase transition was attributed to the appearance of infinite lines at 
the critical temperature. Very recently, the defect theory of the AN transition was 
treated in some detail by Nelson and Toner (1981). 

In the present note we study a statistical lattice model of non-intersecting thermal 
loops of multiplicity z ('loop gas'). The low-temperature expansion (LTE) of the 
partition function may be written as 

t Supported by the Deutsche Forschungsgemeinschaft. 

0305-4470/82/020599 + 05$02.00 @ 1982 The Institute of Physics 599 



600 F Rys and W Helfrich 

Here s is the number of loops of a given configuration, 1 the total number of 
nearest-neighbour bonds forming the loops, E the chemical potential per line element, 
i.e. the energy of creation in the case of defect lines. p is the inverse temperature, z 
denotes the loop multiplicity and may be regarded as the loop fugacity, and gN(s ,  I )  is 
the number of configurations of s non-intersecting (but otherwise non-interacting) 
loops of a total length 1 on a lattice with N lattice points. 

Among others the following systems of non-intersecting closed lines can be 
described by the loop gas model (1). 

For z = 1 : thermally created non-polar loops or thermally equilibrated ring poly- 
mers (if the density of chains is negligible). 

For z = 2: polar loops, which may be instrumental in the aforementioned melting 
transitions. 

For I = 4: dislocation loops with multiplicity four involving two pairs of equivalent 
Burgers vectors, which could describe more complex melting phenomena. 

In P 2, a formal equivalence of the low-temperature expansion of the loop gas 
partition function with the corresponding high-temperature expansion of an m-aniso- 
tropic n-vector model in the limit n = 0 ('m-anisotropic (n = 0)-vector model') is shown. 
It differs from a relationship between a system of loops of multiplicity n and the isotropic 
n-vector model for n > 0 (Helfrich and Muller 1980) which is characterised by a 'soft' 
line repulsion and does not describe the 'hard' excluded-volume effect. 

In both descriptions there is no elastic interaction of the lines. For the case of defect 
lines this approximation is expected to be good in the presence of sufficient mutual 
screening (Helfrich 1978). 

In 5 3, some special cases are discussed. On a two-dimensional square lattice, the 
loop gas with z = 1 is equivalent to the eight-vertex model in a staggered (or, 
alternatively, in a direct) field. Moreover, the critical behaviour of the loop gas is 
discussed in the dilute limit (one-loop) case and for lattices with coordination number 3. 
In 0 4 some final remarks are made. 

2. Equivalence with the m-anisotropic ( n  = 0)-vector model 

The loop gas model for integer valued multiplicities z is formally related to a 
spin-anisotropic n-vector model in the n = 0 limit. We consider an n-vector Hamil- 
tonian with an anisotropic nearest-neighbour coupling constant fa' (a = 1, . . . , n )  

2 = - J ' " ' s ~ " ' S ~ '  (2) 
( ii) 
U 

where Sj"' is the 0 th  component of an n-component spin vector Si at lattice site i, 
normalised by llSill = &. Using the method of Sarma (1975) (which was developed for 
isotropic couplings only) we set: 

jCu) = J for a = 1, . . . , m 

f o r a  = m +  1, .  . . , n. = AJ (3) 

In the limit n = 0, the high-temperature expansion (HTE) graphs of the partition 
function are given by assemblies of closed non-intersecting loops with weight factors 
m (1 - A k, for each loop where k is the number of line elements of the loop. In Sarma's 
isotropic case the weight factors all vanish as A = 1, On the other hand, for A = 0, they 
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are all equal to m. Therefore, the HTE of the m-anisotropic (n = 0)-vector model for 
A = 0 reads 

where gN(s,  I) has the same meaning as in equation (1). Upon setting 

(BJ = e-@' ( 5 )  
the LTE of the partition function of the loop gas with a positive integer-valued fugacity 
z = m > 0 is obtained. Due to this formal equivalence the critical behaviour of the loop 
gas below T, is expected to be given by the critical behaviour of the m-anisotropic 
(n = 0)-vector model for A = 0 abooe T, in a certain neighbourhood of the critical 
temperature T,. 

3. Special cases 

3.1. 

In two dimensions, the simple loop gas with z = 1 on a square lattice corresponds to the 
eight-vertex model in a staggered field (Nagle (1974), for a definition see Baxter (1971, 
1972), Fan and Wu (1970)) with the following choice of the vertex energies 

on sublattices A and A' respectively. If bonds are placed on all outgoing arrows from 
vertices on the sublattice A and on all ingoing arrows to vertices on the sublattice A', 
then to every configuration of the eight-vertex model with the energies (6) corresponds 
one, and only one, loop gas configuration, the loops being formed by the bonds. For 
m = 1, both models are therefore equivalent. Exact solutions of the eight-vertex model 
in a staggered field are known only for cases in which the free fermion condition (FFC) is 
satisfied (Hsue et a1 1975) 

This condition cannot be fulfilled for all values of p if line intersections are not allowed, 
i.e. for 

05 =wg=O. 

On the other hand, if the latter condition is replaced by 
I 2 w1 =ws=w1 

the lines can cross freely and thus the graphs are identical to those of the single-bond 
Ising HTE graphs. Indeed, for this case, the FFC condition is fulfilled for all (B and the 
solution displays Ising-like critical behaviour. It may be noted that an alternative bond 
assignment gives an equivalence of the I = 1 loop gas with an eight-vertex model in a 
direct field. 
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3.2. 

For small values of z, 2, - 1 and thus the free energy of the loop gas is proportional to z 
(neglecting higher powers in z). After dividing by z, and passing to the limit z = 0 the 
generating function of the one-loop problem (corresponding to the low-loop density 
limit) is obtained. The critical behaviour is governed by the n = 0 critical exponents; for 
instance, the specific heat exponent is given for d = 3 by 

a(d = 3, n = 0) = 0.264. . 

as calculated, e.g. by Zinn-Justin and Le Guillou (1980), by renormalisation group 
methods. Incidentally, an analysis by the ratio method (Rys 1981) of the data for the 
three-dimensional n -vector model (English et al 1979) agrees well with this value. 

3.3. 

On lattices with coordination number 3 the Ising HTE graphs of the partition function 
consist of non-intersecting closed loops only. Therefore, for this particular case, the 
loop gas model with z = 1 is equivalent in the sense of equation ( 5 )  to the Ising model. In 
particular, the specific heat for the two-dimensional honeycomb lattice diverges 
logarithmically at the critical temperature. 

4. b a l  remarks 

We have studied the statistical behaviour of multiply counted non-intersecting loops on 
a lattice. The aim is to deal with the effect of the excluded volume which is known to be 
important in the statistical theory of dilute and semi-dilute polymer systems. As 
pointed out above, the phase transition of the loop gas may have relevance for certain 
melting phenomena, e.g. the AN transition of smectics. The loop gas model, although 
equivalent to known models in special cases (Ising model, eight-vertex model in an 
external field), has not been treated in the general case up to date. It may feature 
interesting critical and crossover phenomena. Among the unsolved problems we 
mention the dependence on z of the critical exponents, the question of the existence of 
an order parameter at low temperatures, and the behaviour at high multiplicities z. 
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